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We investigate the thermodynamic curvature resulting from a Riemannian geometry approach to thermody-
namics for the Pauli paramagnetic gas which is a system of identical fermions each wié1 spic also for
classical ideal paramagnetic gas. We find that both the curvature of classical ideal paramagnetic gas and the
curvature of the Pauli gas in the classical limit reduce to that of a two-component ideal gas. On the other hand,
it is seen straightforwardly that the curvature of classical gas satisfies the geometrical equation exactly. Also a
simple relationship between the curvature of Pauli gas and the correlation volume is obtained. We see that it is
only in the classical and semiclassical regime that the absolute value of the thermodynamic curvature can be
interpreted as a measure of the stability of the sys{&h063-651X%99)09009-]

PACS numbsgfs): 05.70—a, 02.40-k, 05.30.Fk, 64.10:h

I. INTRODUCTION the curvature of classical gas satisfies the geometrical equa-
tion. It is a good example that corroborates the general

Thermodynamic fluctuation theory, whose basic goal is tdheory of Ruppeiner which generalizes the geometrical equa-
express the time independent probability distribution for thetion to cases with more thermodynamic variatfles
state of a fluctuating system in terms of thermodynamic The outline of this paper is as follows. First the Riemann-
quantities, is usually attributed to Einstein, who applied it toian geometry of thermodynamic fluctuation theory is summa-
the problem of blackbody radiatidri]. The full formalism  rized. Second, the Riemannian scalar curvature of the Pauli
for classical thermodynamic fluctuation theory was workedparamagnetic gas is evaluated. Finally the curvature of the
out by Green and Callefi2] in 1951 and elaborated upon by classical ideal paramagnetic gas is calculated and is com-
Callen[3]. pared to the the curvature of Pauli paramagnetic gas in the

However, despite wide applicability, the classical fluctua-classical limit.
tion theory fails near critical points and at volumes of the
order of the correlation volume and less.

In 1979 Ruppeinef4] introduced a Riemannian metric
structure representing thermodynamic fluctuation theory,
which is related to the second derivatives of the entropy. His In this section we review the Riemannian geometrical ap-
theory offered a good interpretation for the distance betweeproach to thermodynamics, we discuss its connection to the
thermodynamic states. He showed that the classical theowovariant thermodynamic fluctuation theory, and we consider
breaks down because it does not take into account local cothe interpretations offered for thermodynamic curvature.
relations[5]. This deficiency of the classical theory is pre-  The second derivatives of a thermodynamic potential den-
cluded in the covariant fluctuation theory of Ruppeiner bysity define the Riemannian metric tensor for the thermody-
using a hierarchy of concentric subsystems, each of whichamic state spacg/]. If we choose extensive densities as
samples only the thermodynamic state of the subsystem incoordinates, we can use the density of either energy or en-
mediately larger than itsef6,7]. One of the most significant tropy as the potential and these two descriptions are thermo-
topics of this theory is the introduction of the Riemanniandynamically equivalent. However, the metric tensor is differ-
thermodynamic curvature as a qualitative tool for the studyent in these two representations. Here we work in entropy
of fluctuation phenomena. This paper is based on this geaepresentation where the meaning of distance, measured in
metrical approach. units of average fluctuations, is very transparent. When some

Here we investigate the thermodynamic curvature for twaextensives are replaced by intensives, the potential becomes
cases: the Pauli paramagnetic gas that is a gas of identical Massieu functior{3]. Let us consider as our thermody-
spin 1/2 fermions in the presence of an external magnetigamic system a fluid,, with a very large volume/,, and

field, and the classical ideal paramagnetic gas. Although ifyithin it an open subsyster, of fixed volumeV. The sys-

each case the thermodynamic state space is three dimeggn A consists of fluid components and is in equilibrium.
sional we obtain very simple expressions for thermodynami q 0 te by the-tuple an— (a° al a2 Y the int
curvatures. It is demonstrated that the curvatures of bot € denote by the-tupleay=(ao.a0.a5. - - - o) the inter-

classical gas and Pauli gas in the classical limit reduce to th&2! €nerdy per volume and the number of particles per vol-

of a two-component ideal gd8]. We also demonstrate that Ume of ther components oy [7]. These parameters are
the standard densities in the entropy representation. They

define the thermodynamic state At,o. The subsystend,,
*Electronic address: kaviani@theory.ipm.ac.ir has a corresponding thermodynamic statk classical ther-

Il. THE GEOMETRICAL APPROACH
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modynamic fluctuation theory, in the Gaussian approxima- In this paper we interpret the absolute value of curvature

tion the probability of finding the thermodynamic state®gf  as a measure of stability because in the sign convention we

betweena anda+da is [7] use the curvature of an ideal Bose gas diverges to negative
infinity at Bose-Einstein condensatiphl].

v\ +12
277)

Py(alag)da’- - -da'=
Ill. THE GEOMETRY OF PAULI PARAMAGNETIC GAS
We now turn our attention to the study of the equilibrium
state of a gas of noninteracting fermions in the presence of
an external magnetic field.

Y
X ex% - ng(aO)AaMAa”

X Jg(ag)da’dal---da’, (2.1 The extensive parameter which describes the magnetic
properties of such a systemli4, which is the component of
where the total magnetic moment parallel to the external field. The
1 5% entropic intensive parameters are defined3s
e gl qk =
Aat=al~ap, G kg 9akoa”| __° @2 , 9S8 1 o S p , /S H
° U T T TN T T M T
ands is the entropy per volume in the thermodynamic limit, 3.1
kg is Boltzmann’s constant, ang(a,) =defg,,(ap) |- . . L .
The quadratic form in Eq(2.1), We use the thermodynamic potentia) which is defined as
_ v 1 H 1 H P
(AD)?=g,,(ag)Aa"Aa’, (2.3 S e . P Y AL i
w 1) ST’ T T S Tu+_|_p+_|_m T (3.2

constitutes a positive definite Riemannian metric on the ther-
modynamic state space. The positive definiteness is a consehereu, p, m, andP are energy per volume, density, mag-
guence of entropy being a maximum at equilibriars a,. netization, and pressure, respectively. The energy of a par-
Equations(2.1) and (2.3 provide the physical interpretation ticle, in the presence of an external magnetic fté)ds given

for the distance between two thermodynamic states. The ledy
the probability of fluctuation between states, the further apart
they will be. The quantity

Vo(ag)daldal- - -da
) . . ) ) . . wherelJ is the intrinsic magnetic moment of the particle and
in Eq.(2.1) is the invariant Riemannian thermodynamic statem0 is its mass. For a Pauli paramagnetic gas the spin of each
space volume element. The particular form of B42) holds e i1 the vectord must then be either parallel & or
only for standard densities. To express the metric tensor in gar 2 . _parallel to
antiparallel. From the grand canonical distributiGumsing

general set of thermodynamic coordin X(a), one can Fermi-Dirac statisticsone can obtain the following equa-
use the following transformation rule: tions[12] 9€q

P> . -
SZZ—mO—J-H, (3.3)

0= @) @4 PV _V
Yap ax@ gxB IuAd). : In Q:lqg—T=F(f5+,2+fg,2), (3.4
Having the metric we can calculate the Riemannian curva-
ture tensor. For our metric, the scalar curvatRteas units of
real space volume, regardless of the dimension of the state
space[8,9]. It is a measure of the effective interaction be-
tween the components of the system, it is proportional to th&vhere
correlation volume, and it diverges near the critical point of a . N
pure interacting fluid. fo=Faln™), (3.6

Covariant thermodynamic fluctuation theory indicates that

curvature is a measure of the smallest volume where classi- *_ exp( 1£) :exp{iiﬂ> 3.7)
cal thermodynamic fluctuation theory can work. This theory K kgT kgT kgT '
was proposed as the correct way to extend classical thermo-
dynamic fluctuation theory beyond the Gaussian approximaand\ =h/(2mmykgT) " is the mean thermal wavelength of
tion [7]. An alternative interpretation of thermodynamic cur- the particleh is the Planck constant and
vature was offered by Janyszek and Mrugfl®]. They he1
suggested that thermodynamic curvature is a measure of the f(n)= LJ“X dX (3.9
stability of the system under consideration. The system be- nt 77 I'(n)Joenp+1 '
comes less stable if the curvature increases and vice versa.
Also these authors calculated the curvature of ideal Fermive have used the standard symbol for fugacity
and Bose gasegll]. They show that these systems have=exp(u/ksT). From Egs.(3.2) and (3.4 we can find the
curvatures of opposite sign. thermodynamic potential:

1
:F(fs/ﬁ'fs/z)- (3.9

<z

p=

)1/2
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¢(X!yrz):IX_S/Z[fS/Z(e_y_JZ)+f5/2(e_y+JZ)]l (39) R S

F 4

where | =(27m)¥%h® and x=F!,y=F2?,z=F3. We have s
setkg=1.

Now it is straightforward to obtain the metric elements in ?

F coordinateg7]: 1

0.2 0.4 0.6 0.8 1 1.2 1.4
P n

FIG. 1. Thermodynamic curvature as a function of fugacity for
an isotherm ¢=1).
According to Egs. (3.9 and (3.10 and noting that
of ()l dn=(1ln)f,_1(7), the components of the metric
tensor are as follows: ,
R= A e)2[55f2ae2+55f2be2

2(5efa+5efb—3c?f—3d?
—28f%ec®— 25f%ach— 25f°bch—28fd%e?
+12fd?ch— 25e?dka— 25e?bdk+ 12c2dke

3
g13= — 51X A c—d),  gz=Ix" e+ 1), +15cdhka+ 15cdbhK. (3.14
(3.11

15 3
9= X "Aa+b), gi=5Ix"%Hc+d),

As can be seen from E3.14), Ris a symmetric function of
z, this means that scalar curvature is independent of the ori-
Ups=— 13X ¥e—1), gg=132x"3e+1), entation of external magnetic fiel®(—H)=R(H).

In the classical limit and in the absence of an external
wherea="f,, b=fg,, c=fi,, d=f3,, e=fi,, f=fy,; mag_netic field, we have;i—wyeo andf, (7)— 7; soRis
they are functions of andz Their derivatives with respect °Ptained as follows:
to y andz are as follows:

123
R=—-—. (3.15
4 7
Ja Jda b b
@ 57 -3¢ ay —d, —=-Jd, On the other hand in this limit, Eq3.5) gives
2
Jc Jc ad ad P=37 (3.16
—=-e, —=J¢, —=—f, —=-Jf,
ay 9z ay 9z . o
(3.12 From Egs.(3.15 and(3.16 the classical limit ofR is given
by
ge h ae_Jh . K at Ik R 1 31
5_ ’ E_ ’ W_ ) E_ 1 - 2p ( . 7)

N B N This surprising simple result shows that in the classical limit,
whereh=f",,, k=f_,,. We shall use these quantities t0 the scalar curvature is of the order of the volume occupied by
obtain the scalar curvature. The Riemann and the Ricci terg single particle. It is in complete agreement with the scalar
sors and the scalar curvature, respectively, are curvature obtained by Ruppeiner for a multicomponent ideal

gas[8]. It means that in the classical limit the scalar curva-
R, =30 —a,05+T7T% ~T1T* ture of the Pauli paramagnetic gas behaves like that of a
two-component ideal gas.
Figure 1 shows the dependence Rfon » for a fixed
Ric,,=R},,. (3.13  value ofH and for a fixed temperature in units df. In the
classical region wherg<<1, R diverges neatwy=0. This is
related to the fact that in this limj goes to zerdas can be
seen from Eq(3.17)] i.e., there are not enough patrticles for
a continuous thermodynamic description. In the quantum
wherel"’s are the Christoffel symbolgl3]. In our sign con- mechanical region, wherg>1, R tends to a constant value.
vention the sign oR for Fermi gas is positive and that of Figure 2 shows the dependence Rfon H for a fixed
Bose gas is negativgust like the sign convention of Ref. value of and for a fixed temperature in units ®f. Ris a
[7]). The scalar curvature may be worked out from Egs.monotonically decreasing function &f. Physically, as the
(3.12), (3.12, and(3.13: external magnetic field increases, the relative fluctuations of

R=g*"Ric,,,
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FIG. 2. Thermodynamic curvature as a function of magnetic

field for an isotherm £= —H/T and »=1.5). FIG. 4. The inverse of magnetization fluctuation as a function of

magnetic field ¢&= —H/T and »=40).

magnetization decrease. So, the system becomes more stahle

Here we can interpreR as a measure of the stability of the Teely orientable dipoles, each having a magnetic mordent
system. The less the magnitude Rf the more stable the In the_ presence of an ext_ernal magnetic f@ll,dthe chpolt_as
system becomes experience a torque tending to align them in the direction of

Figure 3 shows the dependenceRobn H for p=40. It  the field. The energy of a particle is given by

can be seen that in this quantum regiRehas a maximum. 2
We cannot explain this in terms of the relative fluctuations of &= L — JH cosé. (4.1
magnetization, becaugéAm)?)/{m)? versusz has no such 2mg

maximum. In Fig. 4 we have shown the dependence of the . .
inverse of((Am)2) on z for =40. It is observed that the Here we have neglected the effect of the induced magnetic

behavior of this curve is very similar to that Bf So it seems  fl€ld- Mijatovic et al. used theenergy formof the metric to

that the stability interpretation of thermodynamic curvature€valuate the geometry O.f the paramagnetjc ideal [48%
fails in a strong quantum regime. They considered the particle number to be fixed. Here we use

For the last point we allude to a relationship betwden the entropy formof the metric. We also take the volume to
and the correlation volume. We note that the correlatior?® fixed. The logarithm of the grand canonical partition func-
function of Fermi gas in classical regimﬁ)(3<1 or p<l) tion (using Maxwell-Boltzmann statistigss

is given by the formuld14] PV V sinhJ2)

1 o |nQC=kB—T:47T7’]F—JZ (42)
v(r)=—§e N (3.18

and the thermodynamic potential can again be obtained from
So one can see that the correlation volume in this regime i&9s. (4.2 and(3.2):

A® 4, SINNJ2)
Vcor:m- (3.19 d=4mIX e yT, 4.3

By comparing the above with E¢3.15 we can see that in wherex, y, and z are defined in Sec. lll anég=1. The
the classical regiméRy is proportional to the correlation metric elements are obtained from E§.10):
volume. The possible relationship between the curvature and

the correlation volume in the quantum regime has not been . _ysinr‘(Jz)
explored yet. 911=15mIx" e 3z

IV. CLASSICAL IDEAL PARAMAGNETIC GAS .. __sinh(Jz)

. . g1,=67Ix Y% Y ———,
In this section we calculate the scalar curvature of a clas- Jz

sical paramagnetic gas and compare it to the scalar curvature _
of Pauli paramagnetic gas in the limit of low fugacity and  erlx-5%Y costiJz) sinh(J2)
low magnetic fields. 913= ~OmiX 7T Z 2 |

Consider a gas of identical mutually noninteracting and

R 0.334 — sinh(Jz
A% 5 a3 77_40/_\ g22=4wle3lzefy#,

0.328 z

0.326 —3/2,-y
0

0

(4.4

i Oo3= —4mlx e

L322

z J7Z

cosh{Jz) B sinr(Jz))

FIG. 3. Thermodynamic curvature as a function of magnetic g,.— 4ix 3%

_y( Jsinh(Jz) 2cosr(J 2) 2sinI’(Jz))
field for an isotherm = —H/T and »=40). '

z 22 + ng
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Using Egs.(3.13 and (4.4), one can calculate the scalar \V;
curvature: INQ(= ZWFCOSI’IJZ. (4.9
1\ Jz
Re=g~ 7 Sinhdz (4.5  This is just Eq.(3.4) in the limit of low fugacity and low

magnetic fields(where f, — == ne=?). The thermody-
Equations(4.3) and(4.5) clearly show thaR. and ¢, satisfy ~ namic potential is
the following equation:

%1 9 ¢L=21x"3%%"Y coshiz (4.10

wherex=1 andkg=1. This interesting result is nothing but Again this is the classical limit of Eq(3.9). Using Egs.
the geometrical equation witk= % [7]. It is a good example (3.10 and(3.13 one can obtain the scalar curvature, which
which shows that the geometrical equation can be satisfied it§ ust EQ.(4.8).
more than two dimensiorn9].

On the other hand, the equation of state of the classical
ideal gas PV=NkgT) and Eqgs.(4.6) and(3.2) give

R.=«

V. CONCLUSION

We have evaluated the thermodynamic curvature for Pauli
1 paramagnetic gas which is a system of identical gpiier-
Zz- (4.7 mions, and for the classical ideal paramagnetic gas. The cur-
vature of the classical ideal paramagnetic gas, just like that
Equation(4.7) shows that the curvature of the classical idealof a two-component ideal gas, is seen to be of the same order
paramagnetic gas is of the same order as the volume occas the volume occupied by a single particle. Also we have
pied by a single particle. rigorously demonstrated that this curvature satisfies the geo-
We can see the dependenceRyf on the magnetic field metrical equation.
through Eq.(4.5). R, is a monotonically decreasing function  In the classical limiti.e., »<1) and in the absence of the
of zand has a maximum at=0. Here we can interpret the external magnetic fields the curvature of the Pauli gas re-

curvature as a measure of stability, since the relative fluctugduces to that of a two-component ideal gas. In this regime
tions of magnetizatior{(Am)Z)/(m>2 dominate neaz=0, We can find a simple relationship between the curvature and

Re

and decrease monotonically with increasing the correlation volume.

Now let us look at Eq(3.14 for the curvature of Pauli In the limit of low fugacity and for a finite value of ex-
gas in the limit of low fugacity and low magnetic fields, ternal magnetic field the curvature of the Pauli gas coincides
wherefrf_mi; one can obtain with that of the classical ideal paramagnetic gas which is a

monotonically decreasing function of the magnetic field;
3 here we can interpret the curvature as a measure of stability.
1A 1 .
= . (4.8  The system becomes more stable if the absolute value of the
4 n coshiz curvature decreases.
. S . The curvature as a function of the magnetic field has a
Equation(4.8) is similar to Eq.(4.5), because the behavior of maximum in the quantum regim@here 7> 1). Therefore,

coshz is similar to that of sintz/z; but they are somewhat -
different. The source of this difference is related to the fact%e curvature can no longer be interpreted as a measure of

that in the case of a classical ideal paramagnetic gas, ea ability, howevgr, the inverse of the magneti;ation f_Iuctua-

di . : P gnetic gas, €agy, «(Am)2y-1 is observed to have a behavior similar to
ipole is fregly orientable whereas each .part!cle in .the Paulﬂhat of the thermodynamic curvature.

paramagnetic gas can choose only two directienen in the

limit of low fugacity).

In fact, had we constrained the dipoles to choose only two
directions (parallel or anti-parallel taH) i.e., had we set
cosf#==1in Eq. (4.1 and used the classical grand partition ~ We would like to thank M. Khorrami for useful discus-
function we would have obtained sions and comments.
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