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Pauli paramagnetic gas in the framework of Riemannian geometry
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We investigate the thermodynamic curvature resulting from a Riemannian geometry approach to thermody-
namics for the Pauli paramagnetic gas which is a system of identical fermions each with spin1

2 , and also for
classical ideal paramagnetic gas. We find that both the curvature of classical ideal paramagnetic gas and the
curvature of the Pauli gas in the classical limit reduce to that of a two-component ideal gas. On the other hand,
it is seen straightforwardly that the curvature of classical gas satisfies the geometrical equation exactly. Also a
simple relationship between the curvature of Pauli gas and the correlation volume is obtained. We see that it is
only in the classical and semiclassical regime that the absolute value of the thermodynamic curvature can be
interpreted as a measure of the stability of the system.@S1063-651X~99!09009-1#

PACS number~s!: 05.70.2a, 02.40.2k, 05.30.Fk, 64.10.1h
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I. INTRODUCTION

Thermodynamic fluctuation theory, whose basic goal is
express the time independent probability distribution for
state of a fluctuating system in terms of thermodynam
quantities, is usually attributed to Einstein, who applied it
the problem of blackbody radiation@1#. The full formalism
for classical thermodynamic fluctuation theory was work
out by Green and Callen@2# in 1951 and elaborated upon b
Callen @3#.

However, despite wide applicability, the classical fluctu
tion theory fails near critical points and at volumes of t
order of the correlation volume and less.

In 1979 Ruppeiner@4# introduced a Riemannian metri
structure representing thermodynamic fluctuation theo
which is related to the second derivatives of the entropy.
theory offered a good interpretation for the distance betw
thermodynamic states. He showed that the classical th
breaks down because it does not take into account local
relations@5#. This deficiency of the classical theory is pr
cluded in the covariant fluctuation theory of Ruppeiner
using a hierarchy of concentric subsystems, each of wh
samples only the thermodynamic state of the subsystem
mediately larger than itself@6,7#. One of the most significan
topics of this theory is the introduction of the Riemanni
thermodynamic curvature as a qualitative tool for the stu
of fluctuation phenomena. This paper is based on this g
metrical approach.

Here we investigate the thermodynamic curvature for t
cases: the Pauli paramagnetic gas that is a gas of iden
spin 1/2 fermions in the presence of an external magn
field, and the classical ideal paramagnetic gas. Although
each case the thermodynamic state space is three di
sional we obtain very simple expressions for thermodyna
curvatures. It is demonstrated that the curvatures of b
classical gas and Pauli gas in the classical limit reduce to
of a two-component ideal gas@8#. We also demonstrate tha
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the curvature of classical gas satisfies the geometrical e
tion. It is a good example that corroborates the gene
theory of Ruppeiner which generalizes the geometrical eq
tion to cases with more thermodynamic variables@9#.

The outline of this paper is as follows. First the Rieman
ian geometry of thermodynamic fluctuation theory is summ
rized. Second, the Riemannian scalar curvature of the P
paramagnetic gas is evaluated. Finally the curvature of
classical ideal paramagnetic gas is calculated and is c
pared to the the curvature of Pauli paramagnetic gas in
classical limit.

II. THE GEOMETRICAL APPROACH
TO THERMODYNAMICS

In this section we review the Riemannian geometrical
proach to thermodynamics, we discuss its connection to
covariant thermodynamic fluctuation theory, and we consi
the interpretations offered for thermodynamic curvature.

The second derivatives of a thermodynamic potential d
sity define the Riemannian metric tensor for the thermo
namic state space@7#. If we choose extensive densities a
coordinates, we can use the density of either energy or
tropy as the potential and these two descriptions are ther
dynamically equivalent. However, the metric tensor is diffe
ent in these two representations. Here we work in entro
representation where the meaning of distance, measure
units of average fluctuations, is very transparent. When so
extensives are replaced by intensives, the potential beco
a Massieu function@3#. Let us consider as our thermody
namic system a fluidAV0

with a very large volumeV0, and

within it an open subsystemAV of fixed volumeV. The sys-
temAV0

consists ofr fluid components and is in equilibrium

We denote by then-tuplea05(a0
0 ,a0

1 ,a0
2 , . . . ,a0

r ) the inter-
nal energy per volume and the number of particles per v
ume of ther components ofAV0

@7#. These parameters ar
the standard densities in the entropy representation. T
define the thermodynamic state ofAV0

. The subsystemAV

has a corresponding thermodynamic statea. In classical ther-
3520 © 1999 The American Physical Society



a

it,

e
n

n
le
a

te

in

va

ta
e-
th
f

ha
s
r

rm
m
r-

f t
b
er
rm
ve

ure
we
tive

m
of

etic
f
he

g-
par-

nd
ach

-

f

PRE 60 3521PAULI PARAMAGNETIC GAS IN THE FRAMEWORK OF . . .
modynamic fluctuation theory, in the Gaussian approxim
tion the probability of finding the thermodynamic state ofAV
betweena anda1da is @7#

PV~aua0!da0
•••dar5S V

2p D (r 11)/2

3expS 2
V

2
gmn~a0!DamDanD

3Ag~a0!da0da1
•••dar , ~2.1!

where

Dam5am2a0
m , gmn52

1

kB

]2s

]am]an U
a5a0

, ~2.2!

ands is the entropy per volume in the thermodynamic lim
kB is Boltzmann’s constant, andg(a0)5det@gmn(a0)#.

The quadratic form in Eq.~2.1!,

~D l !25gmn~a0!DamDan, ~2.3!

constitutes a positive definite Riemannian metric on the th
modynamic state space. The positive definiteness is a co
quence of entropy being a maximum at equilibriuma5a0.
Equations~2.1! and ~2.3! provide the physical interpretatio
for the distance between two thermodynamic states. The
the probability of fluctuation between states, the further ap
they will be. The quantity

Ag~a0!da0da1
•••dar

in Eq. ~2.1! is the invariant Riemannian thermodynamic sta
space volume element. The particular form of Eq.~2.2! holds
only for standard densities. To express the metric tensor
general set of thermodynamic coordinatesx5x(a), one can
use the following transformation rule:

gab8 ~x!5
]am

]xa

]an

]xb gmn~a!. ~2.4!

Having the metric we can calculate the Riemannian cur
ture tensor. For our metric, the scalar curvatureR has units of
real space volume, regardless of the dimension of the s
space@8,9#. It is a measure of the effective interaction b
tween the components of the system, it is proportional to
correlation volume, and it diverges near the critical point o
pure interacting fluid.

Covariant thermodynamic fluctuation theory indicates t
curvature is a measure of the smallest volume where cla
cal thermodynamic fluctuation theory can work. This theo
was proposed as the correct way to extend classical the
dynamic fluctuation theory beyond the Gaussian approxi
tion @7#. An alternative interpretation of thermodynamic cu
vature was offered by Janyszek and Mrugala@10#. They
suggested that thermodynamic curvature is a measure o
stability of the system under consideration. The system
comes less stable if the curvature increases and vice v
Also these authors calculated the curvature of ideal Fe
and Bose gases@11#. They show that these systems ha
curvatures of opposite sign.
-
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In this paper we interpret the absolute value of curvat
as a measure of stability because in the sign convention
use the curvature of an ideal Bose gas diverges to nega
infinity at Bose-Einstein condensation@11#.

III. THE GEOMETRY OF PAULI PARAMAGNETIC GAS

We now turn our attention to the study of the equilibriu
state of a gas of noninteracting fermions in the presence
an external magnetic fieldH.

The extensive parameter which describes the magn
properties of such a system isM, which is the component o
the total magnetic moment parallel to the external field. T
entropic intensive parameters are defined as@3#

F15
]S

]U
5

1

T
, F25

]S

]N
52

m

T
, F35

]S

]M
52

H

T
.

~3.1!

We use the thermodynamic potentialf, which is defined as

f5sF1

T
,2

m

T
,2

H

T G5s2
1

T
u1

m

T
r1

H

T
m5

P

T
, ~3.2!

whereu, r, m, andP are energy per volume, density, ma
netization, and pressure, respectively. The energy of a
ticle, in the presence of an external magnetic fieldH, is given
by

E5
p2

2m0
2JW•HW , ~3.3!

whereJW is the intrinsic magnetic moment of the particle a
m0 is its mass. For a Pauli paramagnetic gas the spin of e
particle is1

2 ; the vectorJW must then be either parallel toHW or
antiparallel. From the grand canonical distribution~using
Fermi-Dirac statistics! one can obtain the following equa
tions @12#:

ln Q5
PV

kBT
5

V

l3 ~ f 5/2
1 1 f 5/2

2 !, ~3.4!

r5
N

V
5

1

l3 ~ f 3/2
1 1 f 3/2

2 !, ~3.5!

where

f n
65 f n~h6!, ~3.6!

h65h expS 7
JH

kBTD5expS m

kBT
7

JH

kBTD ~3.7!

andl5h/(2pm0kBT)1/2 is the mean thermal wavelength o
the particle,h is the Planck constant and

f n~h!5
1

G~n!
E

0

` Xn21dX

eX/h11
~3.8!

we have used the standard symbol for fugacityh
5exp(m/kBT). From Eqs.~3.2! and ~3.4! we can find the
thermodynamic potential:
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f~x,y,z!5Ix23/2@ f 5/2~e2y2Jz!1 f 5/2~e2y1Jz!#, ~3.9!

where I 5(2pm)3/2/h3 and x5F1,y5F2,z5F3. We have
setkB51.

Now it is straightforward to obtain the metric elements
F coordinates@7#:

gmn5
]2f

]Fm]Fn . ~3.10!

According to Eqs. ~3.9! and ~3.10! and noting that
] f n(h)/]h5(1/h) f n21(h), the components of the metri
tensor are as follows:

g115
15

4
Ix27/2~a1b!, g125

3

2
Ix25/2~c1d!,

g1352
3

2
IJx25/2~c2d!, g225Ix23/2~e1 f !,

~3.11!

g2352IJx23/2~e2 f !, g335IJ2x23/2~e1 f !,

wherea5 f 5/2
1 , b5 f 5/2

2 , c5 f 3/2
1 , d5 f 3/2

2 , e5 f 1/2
1 , f 5 f 1/2

2 ;
they are functions ofy andz. Their derivatives with respec
to y andz are as follows:

]a

]y
52c,

]a

]z
5Jc,

]b

]y
52d,

]b

]z
52Jd,

]c

]y
52e,

]c

]z
5Je,

]d

]y
52 f ,

]d

]z
52J f ,

~3.12!

]e

]y
52h,

]e

]z
5Jh,

] f

]y
52k,

] f

]z
52Jk,

whereh5 f 21/2
1 , k5 f 21/2

2 . We shall use these quantities
obtain the scalar curvature. The Riemann and the Ricci
sors and the scalar curvature, respectively, are

Rlmn
k 5]nGml

k 2]mGnl
k 1Gml

h Gnh
k 2Gnl

h Gmh
k ,

Ricmn5Rmln
l , ~3.13!

R5gmnRicmn ,

whereG ’s are the Christoffel symbols@13#. In our sign con-
vention the sign ofR for Fermi gas is positive and that o
Bose gas is negative~just like the sign convention of Ref
@7#!. The scalar curvature may be worked out from E
~3.11!, ~3.12!, and~3.13!:
n-

.

R5
l3

2~5e f a15e f b23c2f 23d2e!2 @55f 2ae2155f 2be2

228f 2ec2225f 2ach225f 2bch228f d2e2

112f d2ch225e2dka225e2bdk112c2dke

115cdhka115cdbhk#. ~3.14!

As can be seen from Eq.~3.14!, R is a symmetric function of
z; this means that scalar curvature is independent of the
entation of external magnetic field,R(2H)5R(H).

In the classical limit and in the absence of an exter
magnetic field, we haveh6→h→0 and f n

6(h)→h; so R is
obtained as follows:

R5
1

4

l3

h
. ~3.15!

On the other hand in this limit, Eq.~3.5! gives

r5
2

l3 h. ~3.16!

From Eqs.~3.15! and ~3.16! the classical limit ofR is given
by

R5
1

2r
. ~3.17!

This surprising simple result shows that in the classical lim
the scalar curvature is of the order of the volume occupied
a single particle. It is in complete agreement with the sca
curvature obtained by Ruppeiner for a multicomponent id
gas@8#. It means that in the classical limit the scalar curv
ture of the Pauli paramagnetic gas behaves like that o
two-component ideal gas.

Figure 1 shows the dependence ofR on h for a fixed
value ofH and for a fixed temperature in units ofl3. In the
classical region whereh,1, R diverges nearh50. This is
related to the fact that in this limitr goes to zero@as can be
seen from Eq.~3.17!# i.e., there are not enough particles f
a continuous thermodynamic description. In the quant
mechanical region, whereh@1, R tends to a constant value

Figure 2 shows the dependence ofR on H for a fixed
value ofh and for a fixed temperature in units ofl3. R is a
monotonically decreasing function ofH. Physically, as the
external magnetic field increases, the relative fluctuations

FIG. 1. Thermodynamic curvature as a function of fugacity
an isotherm (z51).
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magnetization decrease. So, the system becomes more s
Here we can interpretR as a measure of the stability of th
system. The less the magnitude ofR, the more stable the
system becomes.

Figure 3 shows the dependence ofR on H for h540. It
can be seen that in this quantum regime,R has a maximum.
We cannot explain this in terms of the relative fluctuations
magnetization, because^(Dm)2&/^m&2 versusz has no such
maximum. In Fig. 4 we have shown the dependence of
inverse of^(Dm)2& on z for h540. It is observed that the
behavior of this curve is very similar to that ofR. So it seems
that the stability interpretation of thermodynamic curvatu
fails in a strong quantum regime.

For the last point we allude to a relationship betweenR
and the correlation volume. We note that the correlat
function of Fermi gas in classical regime (rl3!1 or h !1!
is given by the formula@14#

n~r !52
1

2
e22pr 2/l2

. ~3.18!

So one can see that the correlation volume in this regim

Vcor5
l3

~2p!3/2. ~3.19!

By comparing the above with Eq.~3.15! we can see that in
the classical regimeRh is proportional to the correlation
volume. The possible relationship between the curvature
the correlation volume in the quantum regime has not b
explored yet.

IV. CLASSICAL IDEAL PARAMAGNETIC GAS

In this section we calculate the scalar curvature of a c
sical paramagnetic gas and compare it to the scalar curva
of Pauli paramagnetic gas in the limit of low fugacity an
low magnetic fields.

Consider a gas of identical mutually noninteracting a

FIG. 2. Thermodynamic curvature as a function of magne
field for an isotherm (z52H/T andh51.5).

FIG. 3. Thermodynamic curvature as a function of magne
field for an isotherm (z52H/T andh540).
ble.
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freely orientable dipoles, each having a magnetic momenJ.
In the presence of an external magnetic fieldH, the dipoles
experience a torque tending to align them in the direction
the field. The energy of a particle is given by

E5
p2

2m0
2JH cosu. ~4.1!

Here we have neglected the effect of the induced magn
field. Mijatovic et al. used theenergy formof the metric to
evaluate the geometry of the paramagnetic ideal gas@15#.
They considered the particle number to be fixed. Here we
the entropy formof the metric. We also take the volume t
be fixed. The logarithm of the grand canonical partition fun
tion ~using Maxwell-Boltzmann statistics! is

ln Qc5
PV

kBT
54ph

V

l3

sinh~Jz!

Jz
~4.2!

and the thermodynamic potential can again be obtained f
Eqs.~4.2! and ~3.2!:

fc54pIx23/2e2y
sinh~Jz!

Jz
, ~4.3!

where x, y, and z are defined in Sec. III andkB51. The
metric elements are obtained from Eq.~3.10!:

g11515pIx27/2e2y
sinh~Jz!

Jz
,

g1256pIx25/2e2y
sinh~Jz!

Jz
,

g13526pIx25/2e2yS cosh~Jz!

z
2

sinh~Jz!

Jz2 D ,

~4.4!

g2254pIx23/2e2y
sinh~Jz!

Jz
,

g23524pIx23/2e2yS cosh~Jz!

z
2

sinh~Jz!

Jz2 D ,

g3354pIx23/2e2yS J sinh~Jz!

z
22

cosh~Jz!

z2
12

sinh~Jz!

Jz3 D .

FIG. 4. The inverse of magnetization fluctuation as a function
magnetic field (z52H/T andh540).
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Using Eqs.~3.13! and ~4.4!, one can calculate the scala
curvature:

Rc5
1

8p

l3

h

Jz

sinhJz
. ~4.5!

Equations~4.3! and~4.5! clearly show thatRc andfc satisfy
the following equation:

Rc5k
kB

fc
, ~4.6!

wherek5 1
2 andkB51. This interesting result is nothing bu

the geometrical equation withk5 1
2 @7#. It is a good example

which shows that the geometrical equation can be satisfie
more than two dimensions@9#.

On the other hand, the equation of state of the class
ideal gas (PV5NkBT) and Eqs.~4.6! and ~3.2! give

Rc5
1

2r
. ~4.7!

Equation~4.7! shows that the curvature of the classical ide
paramagnetic gas is of the same order as the volume o
pied by a single particle.

We can see the dependence ofRc on the magnetic field
through Eq.~4.5!. Rc is a monotonically decreasing functio
of z and has a maximum atz50. Here we can interpret th
curvature as a measure of stability, since the relative fluc
tions of magnetization̂(Dm)2&/^m&2 dominate nearz50,
and decrease monotonically with increasingz.

Now let us look at Eq.~3.14! for the curvature of Paul
gas in the limit of low fugacity and low magnetic field
where f n

6→h6; one can obtain

R5
1

4

l3

h

1

coshJz
. ~4.8!

Equation~4.8! is similar to Eq.~4.5!, because the behavior o
coshz is similar to that of sinhz/z; but they are somewha
different. The source of this difference is related to the f
that in the case of a classical ideal paramagnetic gas,
dipole is freely orientable whereas each particle in the P
paramagnetic gas can choose only two directions~even in the
limit of low fugacity!.

In fact, had we constrained the dipoles to choose only
directions ~parallel or anti-parallel toH) i.e., had we set
cosu561 in Eq. ~4.1! and used the classical grand partitio
function we would have obtained
r-
in

al

l
u-

a-

t
ch
li

o

ln Qc852h
V

l3 coshJz. ~4.9!

This is just Eq.~3.4! in the limit of low fugacity and low
magnetic fields~where f n

6→h65he6zJ). The thermody-
namic potential is

fc852Ix23/2e2y coshJz. ~4.10!

Again this is the classical limit of Eq.~3.9!. Using Eqs.
~3.10! and ~3.13! one can obtain the scalar curvature, whi
is just Eq.~4.8!.

V. CONCLUSION

We have evaluated the thermodynamic curvature for P
paramagnetic gas which is a system of identical spin1

2 fer-
mions, and for the classical ideal paramagnetic gas. The
vature of the classical ideal paramagnetic gas, just like
of a two-component ideal gas, is seen to be of the same o
as the volume occupied by a single particle. Also we ha
rigorously demonstrated that this curvature satisfies the g
metrical equation.

In the classical limit~i.e.,h!1) and in the absence of th
external magnetic fields the curvature of the Pauli gas
duces to that of a two-component ideal gas. In this regi
we can find a simple relationship between the curvature
the correlation volume.

In the limit of low fugacity and for a finite value of ex
ternal magnetic field the curvature of the Pauli gas coinci
with that of the classical ideal paramagnetic gas which i
monotonically decreasing function of the magnetic fie
here we can interpret the curvature as a measure of stab
The system becomes more stable if the absolute value o
curvature decreases.

The curvature as a function of the magnetic field ha
maximum in the quantum regime~whereh@1). Therefore,
the curvature can no longer be interpreted as a measur
stability, however, the inverse of the magnetization fluctu
tion ^(Dm)2&21 is observed to have a behavior similar
that of the thermodynamic curvature.
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